

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100				
NOTE:(i) Attempt ONLY FIVE questions. ALL questions carry EQUAL marks							
(ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.							
 (iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book m be crossed 							
 (v) Extra attempt of any question or any part of the attempted question will not be considered. (vi) Use of Calculator is allowed. 							
Q. No. 1.	(a)	Prove that $\nabla^2 r^n = n(n+1)r^{n-1}$	2	(10)			
	(b)	Evaluate $\iint_{s} \underline{A} \cdot \overline{n} ds$ where $\overline{A} = 18$	$z\underline{i}-12\underline{j}+3\underline{y}\underline{k}$ and S is that part of the plane	(10)			
		2x + 3y + 6z = 12 which is located	in the 1 st octant.				
O No 2	A n	article P of mass pr slides down a fri	ctionless inclined plane AB of an angle α with	(20)			
2.110.2.	the l	horizontal. If it starts from rest at the (c) the distance travelled after time t	e top A, find (a) the acceleration (b) the velocity	(20)			
		· 0					
Q. No. 3.	(a)	Discuss the motion of a particle m distance 'a' from a point O and t distance from O.	hoving in a straight line if it starts from rest at a noves with an acceleration equal to k times its	(10)			
	(b)	Find radial and transversal compor	ents of velocity and acceleration.	(10)			
Q. No. 4.	(a)	Solve $\frac{d^2 y}{dx^2} + y = Co \sec x$	~7	(10)			
	(b)	Solve $dy + \frac{y - Sinx}{x} dx = 0$		(10)			
Q. No. 5.	(a)	Solve the initial value problem		(10)			
		$x(2+x)\frac{dy}{dx} + 2(1+x)y = 1 + 3x^{2},$	y(-1) = 1				
	(b)	Find the general solution of the equation $(D^3 - 2D + 1)y = 2x^3 - 3x^2 + 4x + 5$	uation 5	(10)			
Q. No. 6.	(a)	Find the Fourier series of f:		(10)			
C C		$f(x) = \int x, 0 < x < 1$					
		$\int (x)^{-1} \left[0, 1 < x < 2 \right]$					
	(b)	Solve the boundary value problem	$\frac{\partial^2 u}{\partial x} = \frac{1}{2} \frac{\partial u}{\partial x}$	(10)			
		Satisfying u(a t)-u(1 t)-0 and u(y	$\partial x^2 = k \partial t$				
		Sausrying $u(0,t) - u(1,t) - 0$ and $u(x,t)$	Page 1 of 2				

APPLIED MATHEMATICS

Q. No. 7.	(a)	By using regular Falsi method, solve $Logx - Cosx = 0$	(10)
	(b)	Find the value of $f(7.5)$ by using Newton Gregory Backward Difference Interpolation formula. X: 5, 6.1, 6.9, 8, 8.6 f(x): 3.49,4.82,5.96,7.5,8.2	(10)
Q. No. 8.	(a)	Applying the Taylor series method, compute $\int_{0}^{x} Sint dx = 0$ (0.1)1	(10)
	(b)	$\int_{0}^{\infty} \frac{dt}{dt} \text{ for } x = 0 \ (0.1)1$ Use fourth order RK method to solve $\frac{dy}{dx} = t + y \ ; \ y(0) = 1 \ from \ t = 0 \ to \ t = 0.4 \ taking \ h = 0.4$	(10)

MMM. COUVISION. COUV. Of